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The response and stability of a high-speed extended length endmill subjected to cutting
forces typical of milling operations are studied. The system is modelled as a rotating,
tapered, "lament-wound composite, Timoshenko shaft having clamped}free supports, and
subjected to #uctuating, de#ection-dependent, cutting-type end loads, including
regenerative delay e!ects. External and internal viscous damping are also included in the
model. The general Galerkin method is used to satisfy spatial dependence in the system
equations, and the system's stability and forced response are determined using various
techniques. From these, it is found that improvements of performance are possible by
tapering and using composite materials.
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1. INTRODUCTION

Kim et al. [1], developed a model for an axially tapered, composite, Timoshenko shaft
which is rotating about its central axis. The structure is taken to have clamped}free
supports, and the model is intended to represent an extended-length endmill (i.e., a part
between the tool holder and the cutter) in an end-milling operation or a boring bar in
a boring operation. Free vibration and static sti!ness were treated by Kim et al. [1]. Studies
were performed which showed the advantages of cross-section tapering and the
incorporation of "ber-reinforced polymeric materials on natural frequencies and static
sti!ness.

An important measure of an endmill design is its response and stability in a cutting
operation. To this end, the model developed by Kim et al. [1] is extended in the present
work to include milling cutting forces of the type used by Tlusty and MacNeil [2] and
Smith and Tlusty [3]. These forces vary as the tool vibrates and so produce periodically
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varying coe$cients and delay terms (regenerative e!ects) in the di!erential equations of
motion. Additionally, periodic forcing terms arise, as well as terms that can induce
#utter-like instabilities (by which is meant the real parts of certain eigenvalues being
positive). The result is a model of a system capable of forced resonance and unstable
response due to regenerative e!ects, parametric resonance, and #utter. The model is
a continuous mass distribution Timoshenko beam model including various anisotropic
coupling e!ects. It also includes gyroscopic e!ects due to high rotational speed. The
extraction of stability zones for such a model incorporating regenerative cutting forces has
not, to the authors' knowledge, been previously reported.

The general Galerkin method is used to satisfy spatial dependence in the partial
di!erential equations of motion and produce a set of coupled ordinary di!erential-delay
equations, with time-dependent coe$cients. From these, cutting stability diagrams and
forced response during a cutting process are determined using various techniques. When the
delay terms are discarded, the monodromy matrix technique is used to obtain #utter and
parametric resonance zones. When the delay terms are included, a simpli"ed approach
based on the work of Altintas and Budak [4] and direct numerical integration are used to
assess system stability. End-milling results are given for three design cases: non-tapered
steel, non-tapered steel/composite hybrid, tapered steel/composite hybrid (results for boring
operations are planned for a future work). It is shown that cutting stability is improved by
the use of composites, as well as by tapering. Also, use of composites and shaft tapering,
with the attendant increase in bending natural frequencies, can be bene"cial from a forced
motion viewpoint.

2. EQUATIONS OF MOTION

Consider the tapered, "lament-wound composite shaft shown in Figure 1. The
equations of motion of a uniformly rotating, tapered, "lament-wound composite
Timoshenko beam were derived by Kim et al. [1]. In the model developed, the bending
motions are decoupled from the axial and torsional motions and are described by the
following equations:
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Figure 1. Single lamina of a tapered, "lament-wound composite shaft.



SHAFT MOTION IN END-MILLING 585
muK
y
#(c

e
#c

i
)uR

y
!c

i
Xu

x
!MiKs

V
(u@

y
#t

y
)N@#MiKo

V
(u@

x
!t

x
)N@

!MKs
VM

t@
y
N@#MKo

VM
t@

x
N@!f

y
"0, (2)

I
y
tG
x
!I

z
XtQ

y
!MK

M
t@

x
N@#MiKs

MV
(u@

x
!t

x
)N@#MiKo

MV
(u@

y
#t

y
)N@

!iKs
V
(u@

x
!t

x
)!iKo

V
(u@

y
#t

y
)#Ks

VM
t@

x
#Ko

VM
t@

y
"0, (3)

I
x
tG
y
#I

z
XtQ

x
!MK

M
t@
y
N@!MiKs

MV
(u@

y
#t

y
)N@#MiKo

MV
(u@

x
!t

x
)N@

#iKs
V
(u@

y
#t

y
)!iKo

V
(u@

x
!t

x
)#Ks

VM
t@

y
!Ko

VM
t@
x
"0. (4)

Results for axial and torsional motions (as well as some static strength analyses) are given in
reference [5].

Here the shaft has been taken to be rotating at a uniform rate X about the inertial z-axis.
u
x

and u
y
are lateral de#ections of the neutral axis, t

x
and t

y
are bending rotation angles

about the inertial y- and x-axis, respectively, m is the mass per unit length and the I's are
mass moments of inertia per unit length. The prime and overdot denote di!erentiation w.r.t.
z and time (t) respectively. Ks

V
, Ko

V
, Ks

VM
, Ko

MV
Ks

MV
, Ko

VM
, and K

M
are physical constants

which are complicated functions involving the geometry, taper angle a, material properties
of the layers and "ber angles. Details on them will not be repeated here. i is a Timoshenko
shear coe$cient and f

x
and f

y
are applied forces per unit length in the x and y directions

respectively.
Damping plays an important role in the suppression/enhancement of instabilities. Three

commonly used models in rotating system dynamics are external viscous damping [6, 7],
internal viscous damping [6}8] and hysteretic damping [6, 8]. External viscous damping is
always stabilizing, hysteretic damping is always destabilizing (independent of rotational
speed) and internal viscous damping may be destabilizing (depending on the rotational
speed).

Inclusion of hysteretic damping could be achieved by using constitutive relations for
linear viscoelastic solids. However, this leads to considerably increased complexity of an
already complicated theoretical model and will not be pursued in this work. Note that
based on work on an isotropic, Timoshenko shaft [8] it can be concluded that hysteretic
damping plays a minor role compared to viscous damping for clamped}free boundary
conditions.

For composite shafts the damping scenario is far more complex [9] and depends
on multiple loss factors (anisotropic damping) related to the speci"c lay-up of the
structure (see e.g., references [10, 11]). In spite of the complexity, recent tests have been
conducted on spinning composite rotors [12] that show, like isotropic rotors, the damping
e!ect decreases with increase in rotational speed, but the rotors are stable up to the
critical speed.

In light of the above, it might be expected that even for a stable response, hysteretic
damping would e!ectively result in reduced overall damping in the rotating system. To
account for this in the present work conservative estimates of the viscous damping
coe$cient values will be used.

Damping terms were not included in Kim et al. [1]. These additional terms are
underlined in equations (1) and (2); c

e
is an external viscous damping constant per unit

length and c
i
is an internal viscous damping constant per unit length. c

e
is proportional to

the speed in the inertial co-ordinate system and c
i
is proportional to the speed in the

rotating co-ordinate system [6}8].
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The shaft is taken to be "xed at z"0 and free at z"¸, so that the boundary conditions
are
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3. GALERKIN METHOD

Analytic solutions to equations (1)}(4) are not feasible and here the Galerkin method is
used. One takes
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The Galerkin functions m
n
for the variables u

x
and u

y
are taken to be the mode shapes of

a uniform, non-rotating, isotropic, "xed}free Euler}Bernoulli beam. The Galerkin
functions a

n
for the angular deformations t

x
and t

y
are taken to be

a
n
"sin

(2n!1)nz

2¸
. (14)

The Galerkin functions used do not satisfy the boundary conditions (6)}(9). Hence the
so-called general Galerkin method is used (see references [13, 1]). The procedure yields a set
of equations of the form
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These coe$cients are calculated numerically (with the aid of MAPLE [14]). Also
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The free vibration problem, MFN"M0N, has been treated by Kim et al. [1]. Here attention
is focused on the case MFNOM0N.

4. CUTTING FORCE MODEL

Consider a half immersion, up-milling operation with a four-#uted, end-milling cutter
(see Figure 2). Here, only a steady state end-milling operation is treated and the workpiece
is assumed to be rigid. A de#ection-dependent cutting force model is used. The tangential
and radial forces are based on the work of Tlusty and MacNeil [2] and Smith and
Tlusty [3].

It turns out that in the subsequent work on stability the cutting force modelling plays
a signi"cant role and some elaboration on it is appropriate. Shown in Figure 3 are sketches
of the cut surface corresponding to one cutting tooth passing. For clarity, the "gure depicts
a moving tool in the horizontal direction, instead of a moving workpiece. h

t
denotes the

angular position of the engaged tooth (0)h
t
(0)5n) and O

1
, O

2
are the positions of the

shaft center at time t!¹ and t, respectively, ¹ being the tooth period (¹"2n/(N
t
X) where

the number of teeth is N
t
"4).

The wavy lines depict the cut surfaces at times t!¹ and t. If there were no vibrations,
these surfaces would be circular and the chip thickness would be P

1
P
2
. Due to the vibration

the actual chip thickness is P
1
P
2
!u

r
(t)#u

r
(t!¹@) where u

r
is the de#ection of the cutter
Figure 2. Cutting force model: (a) tangential and radial cutting forces, (b) transformed cutting forces along the x-
and y-axis.



Figure 3. Sketches of the cut surface (not drawn to scale).
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normal to the cut surface (without the undulations), ¹@"¹!D¹ and D¹"Dh
t
/X. If Dh

t
is small (as it is in practice), ¹@ can be replaced by ¹. Also, the approximation
P
1
P
2
"f

t
sin h

t
is used where f

t
is the feed per tooth. In the works of Tlusty and MacNeil [2]

and Smith and Tlusty [3] the tangential cutting force is taken to be proportional to the chip
thickness. This together with the above approximations leads to

F
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where K
s
is the speci"c cutting force per unit chip area and d is the axial depth of cut (width

of chip in the z direction). The value of K
s
(551)6 MPa) is obtained from Tlusty [15] for

milling of aluminum. Note that if there is no loss of contact between the tooth and the
workpiece, terms of the form u

r
(t!2¹), u

r
(t!3¹),2, do not enter into the picture. The

inclusion of the delay term u
r
(t!¹) is known as &&the regenerative e!ect''.

In the model, the radial cutting forces are taken to be given by

F
R
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where b
o
("73)33) [2] is the constant angle between the normal to the cut surface (without

the undulations) and the direction of the cutting force. The variation of h
t
along the z (axial)

direction due to the helix angle of an end-milling cutter is neglected because the axial depth
of cut, d, in the cases simulated in the study is small. Note that if the de#ection of the cutter is
very large, F

T
as given by equation (22) can become negative; the tooth can temporarily lose

contact with the workpiece. When this condition occurs, the cutting forces are set to zero in
the direct numerical simulation. When F

T
becomes positive again, the cutting forces are

reactivated.
From Figure 2, cutting forces along the x- and y-axis are obtained by a co-ordinate

transformation, giving
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Figure 4. Plots of the periodic coe$cient F
x2

(t)/(K
s
d) when X"500 rad/s: (a) magnitude versus time, (b) power

spectral density.
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Note that these forces are de#ection dependent and involve delay terms and periodic
coe$cients. To illustrate the periodicity, a plot of F

x2
(t)/(K

s
d ) versus time when

X"500 rad/s is shown in Figure 4(a) and its power spectral density (psd) is given in
Figure 4(b).



590 W. KIM E¹ A¸.
The cutting forces are treated as concentrated loads at z"¸. Then f
x
and f

y
in equations

(20) and (21) are given by (d denotes a Dirac-delta function)
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Thus, equations (15), (24) and (25) lead to a set of non-homogenous, coupled ordinary
di!erential-delay equations of the form
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Note that the system contains a traditional sti!ness matrix [K], as well as two additional
matrices [K

f
] and [K

p
(t)] which are due to the de#ection-dependent force. The

o!-diagonal terms in [K
f
] are of opposite signs and can cause #utter-like instabilities. The

elements of [K
p
(t)] are periodic in time and so can give rise to parametric instabilities. Also,

note that there will be e!ects due to the time-delay terms (Z (t!¹ )).

5. STABILITY

Consider instabilities due to the homogeneous equations [zero right-hand side in
equation (35)]. Extraction of numerical results from equation (35) presents some formidable
di$culties due to the presence of the time-dependent coe$cients and the delay terms.
Without the delay terms, parametric and #utter instabilities can be, and were, found using
monodromy matrix techniques (a brief description of which is given in Appendix A).
Incorporation of delay terms has been treated by Minis and Yanushevsky [16], using an
analytic Fourier series approach. The method is complicated and a simple method
developed by Altintas and Budak [4] for a lumped mass model is adopted here for
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generating most of the results. The essence of their approach is that the time-dependent
coe$cients are expanded in a Fourier series, retaining only a few terms. They in fact showed
that retention of only the constant term is usually adequate for prediction of stability in
milling (this has been veri"ed in the present research). The application of their procedure to
the continuous composite beam model will now be given. Expanding [K

p
(t)] in a Fourier

series (period ¹) and retaining only the constant term, the homogenous version of equation
(35) becomes
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The solution to equation (42) is sought in the form

MZ(t)N"MZ
0
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0
Ne*u(t~T). (44, 45)

Substitution of equations (44) and (45) into equation (42) shows that for non-trivial
solutions one must have
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Equation (46) is a highly non-linear (due to the e~*uT term) transcendental equation and
extraction of the roots u, which are in general complex (u"u

R
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I
), is quite di$cult. If

u
I
'0((0), the motions are stable (unstable). Thus, the stability boundaries in d versus

X space are found by setting u
I
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In equation (48), d
lim

denotes the value of d on the stability boundary. For a given u
c
,

equation (47) gives a set of complex eigenvalues,
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and from equations (48) and (49) one obtains
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i(n) is de"ned from equation (50) as
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From equation (51)

u
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By substituting equation (52) into equation (50) one can "nally obtain
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K
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Note that the axial depth of cut (d
lim

) should have a positive value.
The numerical procedure is as follows.

(1) Select k (each k will give a di!erent lobe).
(2) Assume a (real) value of u

c
(guided by the system natural frequencies).

(3) Assume a phase angle e (0)e(2n).
(4) Calculate a period ¹ from equation (52) and then calculate a rotational speed.

X"

2n
N

t
¹

.

(5) Solve equation (47) for the j's and check to see if equation (51) is satis"ed. If several
j's satisfy equation(51), choose the j leading to the smallest axial depth of cut, as
determined from equation (53). If none of the j's satisfy equation (51), increase the
value of e and proceed until it is satis"ed.

(6) Repeat the procedure for new u
c
's, until a complete stability lobe has been obtained.

(7) Repeat the procedure for new k's, to obtain other stability lobes.

Direct numerical simulation (hereafter denoted as DNS) of the di!erential-delay equation
(35) is also possible using Simulink [17]. A study was undertaken to determine the accuracy
of the approximation versus DNS. The con"guration treated is a tapered steel/composite
hybrid shaft as shown in Figure 5(a). The stacking sequence is steel /
[85/($3)

2
/!85/($3)

2
]
2
/85/($3)

2
and the composite materials used in this study are

high-modulus carbon/epoxy for $33 layers [density"1732 kg/m3 (given by the rule of
mixtures when the volume fraction of the "ber is 55%), E

1
"435 GPa, E

2
"9 GPa,

G
12
"3)1 GPa, G

23
"3)2 GPa, l

12
"0)31, l

23
"0)39] and glass/epoxy for $853 layers

[density"1980 kg/m3 (given by the rule of mixtures when the volume fraction of the "ber
is 60%), E

1
"54 GPa, E

2
"16 GPa, G

12
"7 GPa, G

23
"6 GPa, l

12
"0)25, l

23
"0)32].

The Timoshenko shear coe$cient is treated in the same manner as in Kim et al. [1], the
details of which will not be reproduced here. Damping values were assigned based on
concepts from a single-degree-of-freedom oscillator, namely

(c
e
#c

i
)"

21u
1
M

11
: L
0

(m
1
)2dz

, (54)

where 1 is the damping ratio and u
1

is the lowest natural bending frequency at X"0.
Picking a (small) 1 value, equation (54) gives the (c

e
#c

i
) value used. The &&reasonableness''



Figure 5. Simulation cases (not drawn to scale): (a) tapered composite shaft with steel core, mass"339 g,
¸"133 mm, t

c
"6)35 mm, t

s
"4)7625 mm, b

1
"18)6375 mm, b

2
"13)1125 mm; (b) non-tapered composite shaft

with steel core, mass"339 g, ¸"133 mm, t
c
"6)35 mm, t

s
"4)7625 mm, b

1
"b

2
"15)875 mm; (c) non-tapered

hollow steel shaft, mass"738 g, ¸"133 mm, t
s
"11)1125 mm, b

1
"b

2
"15)875 mm.

Figure 6. Stability lobes of the tapered steel/composite hybrid shaft (c
i
/(c

e
#c

i
)"0)5, hatched regions are

unstable): **, analytical method (Altintas and Budak [4]); s, DNS.
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of this value of (c
e
#c

i
) was checked by inspecting the decay rate in a numerically obtained

solution to an initial value problem. For the problem at hand 1 was taken to be 0)01 and
0)015 for steel and steel/composite hybrid, respectively. As stated earlier in the general
discussion on damping, these values are on the conservative side. Use of two Galerkin
functions was found to be adequate for convergence. Shown in Figure 6 are plots of stability
lobes in d (axial depth of cut)}X (rotational speed) space by the analytical method based on



Figure 7. Stability plots of the tapered steel/composite hybrid shaft (c
i
/(c

e
#c

i
)"0)5): **, DNS; ' ' ' ' ' ' ' ,

monodromy matrix technique (#utter); j, monodromy matrix technique (parametric resonance).

Figure 8. Response of the tapered steel/composite hybrid shaft: (a) cutting conditions outside the parametric
resonance zone, (b) cutting conditions within the parametric resonance zone.
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the work of Altintas and Budak [4] and DNS. There c
i
was taken to be equal to c

e
[with the

actual numerical values being computed from equation (54)]. Excellent agreement is seen.
From this perspective, retention of only the constant term in the Fourier expansion is fully
adequate to describe the instabilities due to delay. Another issue though is what happens to
the #utter and parametric instabilities (the latter cannot be found using the one term
Fourier approximation). Shown in Figure 7 are plots of #utter and parametric instabilities
obtained using the monodromy matrix technique (no delay) and the results of DNS. Several
important observations can be made. Some of the parametric resonance zones lie in the
delay instability zones and some have disappeared. Thus, the dominant instability
mechanism is due to the delay term. An interesting point to note is that although here the
two parametric resonance zones lie within the delay instability region, they do have
a pronounced e!ect on the rate of response growth. Figure 8 shows this for cutting
conditions of point (a)*outside the parametric instability zone*and point (b)* inside the
parametric instability zone* labelled in Figure 7 [additional nearby points outside the



Figure 9. E!ects of small changes in the amount of delay, ¹: **, ¹; s, 1)01 ¹; h, 0)99 ¹; #, 1)1¹; ], 0)9¹.
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parametric resonance zone were tested and found to behave like point (a)]. Regarding
#utter, a portion of the #utter boundary has disappeared and the remaining portion lies
within the delay instability boundaries. Again the dominant player is the delay term.

In deriving equation (22) some approximations were made, as a consequence of which the
delay might not be exactly ¹, so an issue is how robust the above results are. Shown in
Figure 9 are results for several other values of delay, obtained using the one-term Fourier
approximation. It is seen that the instability boundaries are insensitive to small changes in
the amount of delay.

Figure 10 shows how the instability zones change with the values of internal and external
viscous damping, for the tapered steel/composite hybrid shaft. Figure 10(a) is a plot for
c
i
/(c

e
#c

i
)"0, i.e., no internal damping, and Figure 10(b) is a plot for c

i
/(c

e
#c

i
)"0)5, i.e.,

internal damping value is the same as external damping value keeping 1"0)015. Note that
due to the destabilizing e!ect of internal damping a new instability zone appears at high
rotational speeds in Figure 10(b). Increasing the ratio of internal damping [c

i
/(c

e
#c

i
)] up

to 1)0 [see Figure 10(c)], i.e., no external damping, the instability zone due to the internal
damping is increased and starts at the critical speed (+18 500 rad/s). These stability plots
are obtained by a one-term Fourier series approximation (no time-dependent periodic
coe$cients in the equations of motion) and also veri"ed by DNS (with periodic coe$cients).
Thus, even with inclusion of the time-dependent terms, the instabilities due to internal
viscous damping still begin at the "rst whirling speed. Note that the destabilizing e!ect of
internal damping can be neglected in this study because the practical operation ranges in
milling are well below the critical speed.

Shown in Figure 11 are results for damping values of 1"0)015 and 0)02 when
c
i
/(c

e
#c

i
)"0)5. It is seen that increasing the damping has a signi"cant e!ect on the

locations and widths of the chatter zones. The most signi"cant point is that larger stable
depths of cut can be employed if the damping is increased. For example, at all speeds, the
stable depth of cut is seen to increase by about 30% via the higher damping value of 0)02.

In summary, it may be concluded that the method using the one-term Fourier series
approximation leads to accurate and robust results on stability in end-milling. Since the
method is considerably less computer intensive than DNS, it is employed next to explore



Figure 10. E!ects of the external and internal damping (black regions are unstable): (a) c
i
/(c

e
#c

i
)"0, (b)

c
i
/(c

e
#c

i
)"0)5; (c); c

i
/(c

e
#c

i
)"1.

Figure 11. E!ects of damping values (c
i
/(c

e
#c

i
)"0)5): 22, 1"0)015; '' ''' ' '' , 1"0)02.
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Figure 12. Stability lobes (c
i
/(c

e
#c

i
)"0)5): s, tapered steel/composite hybrid; ' ' '' ' ''' , non-tapered steel/

composite hybrid; **, non-tapered hollow steel.

Figure 13. De#ections due to cutting forces (X"500 rad/s, d"0)6 mm, f
t
"0)1 mm, c

i
/(c

e
#c

i
)"0)5): (a)

tapered steel/composite hybrid, (b) non-tapered steel/composite hybrid, (c) non-tapered hollow steel.

SHAFT MOTION IN END-MILLING 597
the merits of various shaft designs (Figure 5), all involving the same volumes. Shown in
Figure 12 are plots of stability lobes for tapered steel/composite hybrid, non-tapered
steel/composite hybrid, and non-tapered steel. The stable regions of the tapered
steel/composite hybrid shaft are larger than those of the non-tapered steel/composite
hybrid shaft [due to higher bending sti!ness produced by shaft tapering [1]]. Also,
the stable regions of the non-tapered steel/composite hybrid shaft are larger than
those of the non-tapered steel shaft due to higher damping as well as higher bending
sti!ness.



Figure 14. Maximum radial de#ection at z"¸: s, tapered steel/composite hybrid; h, non-tapered hollow steel.
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6. FORCED MOTIONS

Some e!ects of the non-homogeneous terms in equation (35) will now be explored via
direct numerical integration. Shown in Figure 13 are plots of u

x
(¸) and u

y
(¸) as functions of

time for X"500 rad/s, d"0)6 mm, f
t
"0)1 mm and c

i
/(c

e
#c

i
)"0)5. Inspection of these

"gures yields the maximum values of the de#ection. From such data, plots of the peak value
of u

r
(¸) versus X can be constructed and these are shown in Figure 14 for the tapered

steel/composite hybrid shaft and the non-tapered hollow steel shaft. Note that there are
many forced resonance peaks because the applied force is not pure sinusoidal, as shown in
Figure 4. The results show that for X up to 3800 rad/s use of the tapered composite material
shaft is bene"cial in that the values of Du

r
(¸) D

max
are less than those for the non-tapered steel

shaft, with the exception of a region in the vicinity of X"1500 rad/s. However, as
X approaches 4500 rad/s, the 4X component in the forcing term approaches the lowest
bending natural frequency of the tapered steel/composite shaft. Resonance is being
approached and the trends reverse. Thus, use of composites and shaft tapering, with the
attendant increase in bending natural frequencies is bene"cial, from a forced motion
viewpoint, provided the operational speeds are below the "rst natural frequency divided by
four (for a four-#uted cutter), which, in practice, is typically the case.

7. SUMMARY AND CONCLUSIONS

A continuous parameter model has been developed for a rotating, tapered, composite
shaft (representing an extended length endmill), subject to #uctuating, de#ection-dependent
cutting-type end loads. Regenerative (delay) e!ects and external and internal viscous
damping are included in the model.

The general Galerkin method leads to a set of ordinary di!erential-delay equations with
time-dependent coe$cients. Extraction of numerical information from such equations is
a very challenging task, the system being prone to parametric, #utter-like and
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regenerative-type instabilities (&&chatter''). It was shown that the one-term Fourier series
approximation used by Altintas and Budak [4] leads to quite accurate results as determined
by comparisons with direct numerical integration, performed with the aid of Simulink. The
main results were obtained using the Altintas and Budak approximation.

Several design scenarios were considered, namely tapered steel/composite hybrid,
non-tapered steel/composite hybrid, and non-tapered steel shafts. In all cases treated it was
found that the dominant instability mechanism was chatter. Instability zones due to
internal viscous damping were also found, which even with inclusion of the time-dependent
terms in the equations still begin at the "rst whirling speed (in the absence of external
viscous damping). It was found that increasing the damping has a signi"cant e!ect on the
locations and widths of the chatter zones. Larger stable depths of cut can be employed if the
damping is increased. The stable depth of cut increases by about 30% if the damping value
is increased by 33%.

It was also found that the stable regions of the tapered steel/composite hybrid shaft are
larger than those of the non-tapered steel/composite hybrid shaft. Also, the stable regions of
the non-tapered steel/composite hybrid shaft are larger than those of the non-tapered steel
shaft.

Finally, it was shown that use of composites and shaft tapering is bene"cial, from a forced
motion viewpoint, provided the operational speeds are below the "rst natural frequency
divided by four (for a four-#uted cutter).
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APPENDIX A: MONODROMY MATRIX TECHNIQUE

A short description of the monodromy matrix technique (see Meirovitch [18]) is given
here. In "rst order form, the homogeneous equations can be written as

MqR (t)N"[B(t)]Mq(t)N, (A.1)

where [B] is a ¹-periodic matrix. The system fundamental matrix is

[C(t)]"[Mq
1
(t)N, Mq

2
(t)N,2, Mq

n
(t)N], (A.2)

where Mq
j
(t)N, j"1, 2,2, n, are n linearly independent solutions. Integrating equation (A.1)

n times from 0 to ¹ with the initial conditions ([I] denotes the identity matrix)

[C (0)]"[I], (A.3)

numerically generates the monodromy matrix [C(¹)]. If p
j
are the eigenvalues of [C(¹)],

the system is stable when all the magnitudes Ep
j
E)1, j"1,2, n. The numerical

integrations were done in this work by a Runge}Kutta scheme and the eigenvalue analysis
was performed by MATLAB.
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